User Tools

Site Tools


krackhardt_datasets

This is an old revision of the document!


Krackhardt Datasets

Krackhardt dataset in NetData packages

Analysis of Structural Features with advice and reports to data

install.packages("NetData")
# install.packages("igraph")
library(NetData)
library(igraph)
data(package="NetData")
data(kracknets, package = "NetData")
head(krack_full_data_frame)
> head(krack_full_data_frame)
  ego alter advice_tie friendship_tie reports_to_tie
1   1     1          0              0              0
2   1     2          1              1              1
3   1     3          0              0              0
4   1     4          1              1              0
5   1     5          0              0              0
6   1     6          0              0              0
> 
krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0))
head(krack_full_nonzero_edges)
> krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0))
> head(krack_full_nonzero_edges)
   ego alter advice_tie friendship_tie reports_to_tie
2    1     2          1              1              1
4    1     4          1              1              0
8    1     8          1              1              0
12   1    12          0              1              0
16   1    16          1              1              0
18   1    18          1              0              0
> 

subset function은 1 10 0 0 0 와 같은 데이터 열을 제외하려고 사용

#################################################
# data frame 형식의 krack_full_nonzero_edges 
# (원 데이터가 data.frame형식의 
# krack_full_data_frame이었음)을 
# igraph 포맷의 graph로 변환함 (graph.data.frame)
#################################################
krack_full <- graph.data.frame(krack_full_nonzero_edges) 
summary(krack_full)
> krack_full <- graph.data.frame(krack_full_nonzero_edges) 
> summary(krack_full)
IGRAPH 750f8b3 DN-- 21 232 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), reports_to_tie (e/n)
> 
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0])
summary(krack_friend)
krack_friend[]

krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0])
summary(krack_advice)
krack_advice[]
 
krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0])
summary(krack_reports_to)
krack_reports_to[]
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0])
> summary(krack_friend)
IGRAPH 9c78e3a DN-- 21 102 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_friend[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . .
2  1 . . . . . . . . . . . . . . . . 1 . . 1
3  . . . . . . . . . . . . . 1 . . . . 1 . .
4  1 1 . . . . . 1 . . . 1 . . . 1 1 . . . .
5  . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1
6  . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . 1 . . . . . . . . . . . . . . . . .
9  . . . . . . . . . . . . . . . . . . . . .
10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 .
11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . .
12 1 . . 1 . . . . . . . . . . . . 1 . . . 1
13 . . . . 1 . . . . . 1 . . . . . . . . . .
14 . . . . . . 1 . . . . . . . 1 . . . . . .
15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . .
16 1 1 . . . . . . . . . . . . . . . . . . .
17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1
18 . 1 . . . . . . . . . . . . . . . . . . .
19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 .
20 . . . . . . . . . . 1 . . . . . . 1 . . .
21 . 1 . . . . . . . . . 1 . . . . 1 1 . . .
> 
> krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0])
> summary(krack_advice)
IGRAPH 9c7adf4 DN-- 21 190 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_advice[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1
2  . . . . . 1 1 . . . . . . . . . . . . . 1
3  1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1
4  1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1
5  1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1
6  . . . . . . . . . . . . . . . . . . . . 1
7  . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1
8  . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1
9  1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1
10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 .
11 1 1 . . . . 1 . . . . . . . . . . . . . .
12 . . . . . . 1 . . . . . . . . . . . . . 1
13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . .
14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1
16 1 1 . . . . . . . 1 . . . . . . . 1 . . .
17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1
18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1
19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 .
20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1
21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 .
> 
> krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0])
> summary(krack_reports_to)
IGRAPH 9c7cb3e DN-- 21 20 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_reports_to[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . . . . . . . . . . . . . . . . . . .
2  . . . . . . 1 . . . . . . . . . . . . . .
3  . . . . . . . . . . . . . 1 . . . . . . .
4  . 1 . . . . . . . . . . . . . . . . . . .
5  . . . . . . . . . . . . . 1 . . . . . . .
6  . . . . . . . . . . . . . . . . . . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . . . . . . . . . . . . . . . . . . 1
9  . . . . . . . . . . . . . 1 . . . . . . .
10 . . . . . . . . . . . . . . . . . 1 . . .
11 . . . . . . . . . . . . . . . . . 1 . . .
12 . . . . . . . . . . . . . . . . . . . . 1
13 . . . . . . . . . . . . . 1 . . . . . . .
14 . . . . . . 1 . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . 1 . . . . . . .
16 . 1 . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . . . 1
18 . . . . . . 1 . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . 1 . . . . . . .
20 . . . . . . . . . . . . . 1 . . . . . . .
21 . . . . . . 1 . . . . . . . . . . . . . .
> 
par(mfrow = c(1,3))
krack_friend_layout <- layout.fruchterman.reingold(krack_friend)
plot(krack_friend, layout=krack_friend_layout, main = "friend", edge.arrow.size=.5)

krack_advice_layout <- layout.fruchterman.reingold(krack_advice)
plot(krack_advice, layout=krack_advice_layout, main = "advice", edge.arrow.size=.5)

krack_reports_to_layout <- layout.fruchterman.reingold(krack_reports_to)
plot(krack_reports_to, layout=krack_reports_to_layout, main = "reports to", edge.arrow.size=.5)
par(mfrow = c(1,1))
# We'll use the "task" and "social" sub-graphs together as the
# basis for our structural equivalence methods. First, we'll use
# the task graph to generate an adjacency matrix.
#
# This matrix represents task interactions directed FROM the 
# row individual TO the column individual. 
krack_reports_to_matrix_row_to_col <- get.adjacency(krack_reports_to, attr='reports_to_tie')
krack_reports_to_matrix_row_to_col

# To operate on a binary graph, simply leave off the "attr" 
# parameter:
krack_reports_to_matrix_row_to_col_bin <- get.adjacency(krack_reports_to)
krack_reports_to_matrix_row_to_col_bin

# For this lab, we'll use the valued graph. The next step is to 
# concatenate it with its transpose in order to capture both 
# incoming and outgoing task interactions.
krack_reports_to_matrix_col_to_row <- t(as.matrix(krack_reports_to_matrix_row_to_col))
krack_reports_to_matrix_col_to_row

krack_reports_to_matrix <- rbind(krack_reports_to_matrix_row_to_col, krack_reports_to_matrix_col_to_row)
krack_reports_to_matrix
# Next, we'll use the same procedure to add social-interaction
# information.
krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie')
krack_advice_matrix_row_to_col
 
krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice)
krack_advice_matrix_row_to_col_bin
 
krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col))
krack_advice_matrix_col_to_row
 
krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row)
krack_advice_matrix
 
krack_reports_to_advice_matrix <- rbind(krack_reports_to_matrix, krack_advice_matrix)
krack_reports_to_advice_matrix
# Now we have a single 4n x n matrix that represents both in- and
# out-directed task and social communication. From this, we can
# generate an n x n correlation matrix that shows the degree of
# structural equivalence of each actor in the network. 
krack_reports_to_advice_cors <- cor(as.matrix(krack_reports_to_advice_matrix))
krack_reports_to_advice_cors
# To use correlation values in hierarchical NetCluster, they must 
# first be coerced into a "dissimilarity structure" using dist().
# We subtract the values from 1 so that they are all greater than 
# or equal to 0; thus, highly dissimilar (i.e., negatively 
# correlated) actors have higher values.
dissimilarity <- 1 - krack_reports_to_advice_cors
krack_reports_to_dist <- as.dist(dissimilarity)
krack_reports_to_dist
 
# Note that it is also possible to use dist() directly on the 
# matrix. However, since cor() looks at associations between 
# columns and dist() looks at associations between rows, it is
# necessary to transpose the matrix first.
#
# A variety of distance metrics are available; Euclidean 
# is the default.
#m182_task_social_dist <- dist(t(m182_task_social_matrix))
#m182_task_social_dist
 
# hclust() performs a hierarchical agglomerative NetCluster 
# operation based on the values in the dissimilarity matrix 
# yielded by as.dist() above. The standard visualization is a 
# dendrogram. By default, hclust() agglomerates clusters via a
# "complete linkakage" algorithm, determining cluster proximity
# by looking at the distance of the two points across clusters
# that are farthest away from one another. This can be changed via
# the "method" parameter.
 
krack_reports_to_advice_hclust <- hclust(krack_reports_to_dist)
plot(krack_reports_to_advice_hclust)
 
# cutree() allows us to use the output of hclust() to set
# different numbers of clusters and assign vertices to clusters
# as appropriate. For example:
cutree(krack_reports_to_advice_hclust, k=2)
 
# Now we'll try to figure out the number of clusters that best 
# describes the underlying data. To do this, we'll loop through
# all of the possible numbers of clusters (1 through n, where n is
# the number of actors in the network). For each solution
# corresponding to a given number of clusters, we'll use cutree()
# to assign the vertices to their respective clusters 
# corresponding to that solution.
#
# From this, we can generate a matrix of within- and between-
# cluster correlations. Thus, when there is one cluster for each 
# vertex in the network, the cell values will be identical to the
# observed correlation matrix, and when there is one cluster for 
# the whole network, the values will all be equal to the average
# correlation across the observed matrix.
#
# We can then correlate each by-cluster matrix with the observed
# correlation matrix to see how well the by-cluster matrix fits
# the data. We'll store the correlation for each number of
# clusters in a vector, which we can then plot.
 
# First, we initialize a vector for storing the correlations and 
# set a variable for our number of vertices.
clustered_observed_cors = vector()
num_vertices = length(V(krack_reports_to))
 
# Next, we loop through the different possible cluster 
# configurations, produce matrices of within- and between-
# cluster correlations, and correlate these by-cluster matrices
# with the observed correlation matrix.
 
# pdf("6.3_m182_studentnet_task_social_clustered_observed_corrs.pdf")
clustered_observed_cors <-clustConfigurations(num_vertices, krack_reports_to_advice_hclust, krack_reports_to_advice_cors)
clustered_observed_cors
plot(clustered_observed_cors$correlations)
# dev.off()
 
clustered_observed_cors$correlations
# From a visual inspection of the correlation matrix, we can 
# decide on the proper number of clusters in this network. 
# For this network, we'll use 4. (Note that the 1-cluster 
# solution doesn't appear on the plot because its correlation 
# with the observed correlation matrix is undefined.)
num_clusters = 4
clusters <- cutree(krack_reports_to_advice_hclust, k = num_clusters)
clusters
 
cluster_cor_mat <- clusterCorr(krack_reports_to_advice_cors,
                                            clusters)
cluster_cor_mat
 
# Let's look at the correlation between this cluster configuration 
# and the observed correlation matrix. This should match the 
# corresponding value from clustered_observed_cors above.
gcor(cluster_cor_mat, krack_reports_to_advice_cors)
 
#####################
# Questions:
# (1) What rationale do you have for selecting the number of 
# clusters / positions that you do?
#####################
  


### NOTE ON DEDUCTIVE CLUSTERING

# It's pretty straightforward, using the code above, to explore
# your own deductive NetCluster. Simply supply your own cluster
# vector, where the elements in the vector are in the same order
# as the vertices in the matrix, and the values represent the
# cluster to which each vertex belongs. 
#
# For example, if you believed that actors 2, 7, and 8 formed one
# group, actor 16 former another group, and everyone else formed 
# a third group, you could represent this as follows:
deductive_clusters = c(1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1,
                       1, 3)

# You could then examine the fitness of this cluster configuration
# as follows:
deductive_cluster_cor_mat <- generate_cluster_cor_mat(
  krack_reports_to_advice_cors,
  deductive_clusters)
deductive_cluster_cor_mat
gcor(deductive_cluster_cor_mat, krack_reports_to_advice_cors)

### END NOTE ON DEDUCTIVE CLUSTERING

# Now we'll use the 4-cluster solution to generate blockmodels, 
# using the raw tie data from the underlying task and social 
# networks.

# Task valued
task_mean <- mean(as.matrix(krack_reports_to_matrix_row_to_col)_
task_mean

task_valued_blockmodel <- blockmodel(krack_reports_to_matrix_row_to_col, clusters)
task_valued_blockmodel

# Task binary
task_density <- graph.density(krack_reports_to)
task_density

task_binary_blockmodel <- blockmodel(as.matrix(krack_reports_to_matrix_row_to_col_bin), clusters)
task_binary_blockmodel


# Social valued
advice_mean <- mean(as.matrix(krack_advice_matrix_row_to_col))
advice_mean

advice_valued_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col), clusters)
advice_valued_blockmodel

# Social binary
advice_density <- graph.density(krack_advice)
advice_density

advice_binary_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col_bin), clusters)
advice_binary_blockmodel

# We can also permute the network to examine the within- and 
# between-cluster correlations. 

cluster_cor_mat_per <- permute_matrix(clusters, cluster_cor_mat)
cluster_cor_mat_per


#####################
# Questions:
# (2) What is the story you get from viewing these clusters, 
# and their within and between cluster densities on task and 
# social interaction? What can you say about M182 from this?
#####################
#####################
# Questions:
# (3) What does clustering of the triadic census afford us? 
# What roles do you see? Redo the initial blockmodel analysis
# without social interaction (only task) and then compare to 
# this solution. Do they differ? 
#
# Extra credit: Try running the triad census on task AND 
# social interaction separately and then correlating persons. 
# What result do you get? Is it different from our initial 
# blockmodel result? Show your code.  
######################
 
 
 
###
# 5. FACTOR ANALYSIS
###
 
# Note that although we are conducting a principal components
# analysis (PCA), which is technically not exactly the same as
# factor analysis, we will use the term "factor" to describe the
# individual components in our PCA. 
 
# PCA is often used in network analysis as a form of detecting 
# individuals global positioning. We say "global" because these
# clusters aren't defined on local cohesion but from the overall 
# pattern of ties individuals have with all others (structural 
# equivalence). Identifying the first two largest components that
# organize the variance in tie patterns is one way of doing this.
 
# We'll analyze the 4n x n matrix generated above.
 
# First, we want to determine the ideal number of components
# (factors) to extract. We'll do this by examining the eigenvalues
# in a scree plot and examining how each number of factors stacks
# up to a few proposed non-graphical solutions to selecting the
# optimal number of components, available via the nFactors
# package. 
ev <- eigen(cor(as.matrix(krack_reports_to_advice_matrix))) # get eigenvalues
ap <- parallel(subject=nrow(krack_reports_to_advice_matrix),
        var=ncol(krack_reports_to_advice_matrix),
        rep=100,cent=.05)
nS <- nScree(ev$values, ap$eigen$qevpea)
 
# pdf("6.6_m182_studentnet_task_social_pca_scree.pdf")
plotnScree(nS) 

# To draw a line across the graph where eigenvalues are = 1,
# use the following code:
plotnScree(nS) 
abline(h=1)
# dev.off()


# For more information on this procedure, please see 
# the references provided in the parallel() documentation
# (type "?parallel" in the R command line with the package
# loaded).

# Now we'll run a principal components analysis on the matrix,
# using the number of factors determined above (note this may not
# be the same number as you get):
pca_krack_reports_to_advice = principal(as.matrix(krack_reports_to_advice_matrix), nfactors=5, rotate="varimax") 

# Let's take a look at the results in the R terminal:
pca_krack_reports_to_advice 

# You can see the standardized loadings for each factor for each
# node. Note that R sometimes puts the factors in a funky order
# (e.g. RC1, RC2, RC5, RC4, RC3) but all of the factors are there.
# You can see that the SS loadings, proportion of variance
# explained and cumulative variance explained is provided below. A
# Chi Square test of the factors and various other statistics are
# provided below. 

# Note that the eigenvalues can be accessed via the following
# command:
pca_krack_reports_to_advice$values

# Now we will use the factor loadings to cluster and compare that
# to our other NetCluster techniques, using dendrograms.

# Take the distance based on Euclidian Distance
krack_reports_to_factor_dist = dist(pca_krack_reports_to_advice$loadings)

# And cluster
krack_reports_to_factor_hclust <- hclust(krack_reports_to_factor_dist)

# pdf("6.7_m182_studentnet_task_social_pca_hclust.pdf")
plot(krack_reports_to_factor_hclust)
# dev.off()

# And compare to NetCluster based on correlations and triads:
# pdf("6.8_m182_task_cluster_by_correlation_PCA_Triads.pdf")
par(mfrow = c(1,2))
plot(krack_reports_to_advice_hclust, main = "Correlation")
plot(krack_reports_to_factor_hclust, main = "PCA")
# plot(m182_task_triad_hclust, main = "Triads")
par(mfrow = c(1,1))

# dev.off()



#####################
# Questions:
# (4) How do the results across blockmodel techniques differ? 
# Why might you use one over the other? Why might you want to 
# run more than one in your analyses?
#####################

Analysis based on friendship and advice data

preparation

install.packages("NetData")
# install.packages("igraph")
library(NetData)
library(igraph)
data(package="NetData")
data(kracknets, package = "NetData")
head(krack_full_data_frame)
> head(krack_full_data_frame)
  ego alter advice_tie friendship_tie reports_to_tie
1   1     1          0              0              0
2   1     2          1              1              1
3   1     3          0              0              0
4   1     4          1              1              0
5   1     5          0              0              0
6   1     6          0              0              0
> 
krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0))
head(krack_full_nonzero_edges)
> krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0))
> head(krack_full_nonzero_edges)
   ego alter advice_tie friendship_tie reports_to_tie
2    1     2          1              1              1
4    1     4          1              1              0
8    1     8          1              1              0
12   1    12          0              1              0
16   1    16          1              1              0
18   1    18          1              0              0
> 

subset function은 1 10 0 0 0 와 같은 데이터 열을 제외하려고 사용

#################################################
# data frame 형식의 krack_full_nonzero_edges 
# (원 데이터가 data.frame형식의 
# krack_full_data_frame이었음)을 
# igraph 포맷의 graph로 변환함 (graph.data.frame)
#################################################
krack_full <- graph.data.frame(krack_full_nonzero_edges) 
summary(krack_full)
> krack_full <- graph.data.frame(krack_full_nonzero_edges) 
> summary(krack_full)
IGRAPH 750f8b3 DN-- 21 232 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), reports_to_tie (e/n)
> 

extracting friend, advice, reports_to graph

krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0])
summary(krack_friend)
krack_friend[]

krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0])
summary(krack_advice)
krack_advice[]
 
krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0])
summary(krack_reports_to)
krack_reports_to[]
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0])
> summary(krack_friend)
IGRAPH 9c78e3a DN-- 21 102 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_friend[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . .
2  1 . . . . . . . . . . . . . . . . 1 . . 1
3  . . . . . . . . . . . . . 1 . . . . 1 . .
4  1 1 . . . . . 1 . . . 1 . . . 1 1 . . . .
5  . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1
6  . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . 1 . . . . . . . . . . . . . . . . .
9  . . . . . . . . . . . . . . . . . . . . .
10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 .
11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . .
12 1 . . 1 . . . . . . . . . . . . 1 . . . 1
13 . . . . 1 . . . . . 1 . . . . . . . . . .
14 . . . . . . 1 . . . . . . . 1 . . . . . .
15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . .
16 1 1 . . . . . . . . . . . . . . . . . . .
17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1
18 . 1 . . . . . . . . . . . . . . . . . . .
19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 .
20 . . . . . . . . . . 1 . . . . . . 1 . . .
21 . 1 . . . . . . . . . 1 . . . . 1 1 . . .
> 
> krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0])
> summary(krack_advice)
IGRAPH 9c7adf4 DN-- 21 190 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_advice[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1
2  . . . . . 1 1 . . . . . . . . . . . . . 1
3  1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1
4  1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1
5  1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1
6  . . . . . . . . . . . . . . . . . . . . 1
7  . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1
8  . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1
9  1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1
10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 .
11 1 1 . . . . 1 . . . . . . . . . . . . . .
12 . . . . . . 1 . . . . . . . . . . . . . 1
13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . .
14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1
16 1 1 . . . . . . . 1 . . . . . . . 1 . . .
17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1
18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1
19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 .
20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1
21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 .
> 
> krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0])
> summary(krack_reports_to)
IGRAPH 9c7cb3e DN-- 21 20 -- 
+ attr: name (v/c), advice_tie (e/n), friendship_tie (e/n),
| reports_to_tie (e/n)
> krack_reports_to[]
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . . . . . . . . . . . . . . . . . . .
2  . . . . . . 1 . . . . . . . . . . . . . .
3  . . . . . . . . . . . . . 1 . . . . . . .
4  . 1 . . . . . . . . . . . . . . . . . . .
5  . . . . . . . . . . . . . 1 . . . . . . .
6  . . . . . . . . . . . . . . . . . . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . . . . . . . . . . . . . . . . . . 1
9  . . . . . . . . . . . . . 1 . . . . . . .
10 . . . . . . . . . . . . . . . . . 1 . . .
11 . . . . . . . . . . . . . . . . . 1 . . .
12 . . . . . . . . . . . . . . . . . . . . 1
13 . . . . . . . . . . . . . 1 . . . . . . .
14 . . . . . . 1 . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . 1 . . . . . . .
16 . 1 . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . . . 1
18 . . . . . . 1 . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . 1 . . . . . . .
20 . . . . . . . . . . . . . 1 . . . . . . .
21 . . . . . . 1 . . . . . . . . . . . . . .
> 

Visualization of the three (friend, advice, reports_to)

Note that reports to graph looks extremely formal.

par(mfrow = c(1,3))
krack_friend_layout <- layout.fruchterman.reingold(krack_friend)
plot(krack_friend, layout=krack_friend_layout, main = "friend", edge.arrow.size=.5)

krack_advice_layout <- layout.fruchterman.reingold(krack_advice)
plot(krack_advice, layout=krack_advice_layout, main = "advice", edge.arrow.size=.5)

krack_reports_to_layout <- layout.fruchterman.reingold(krack_reports_to)
plot(krack_reports_to, layout=krack_reports_to_layout, main = "reports to", edge.arrow.size=.5)
par(mfrow = c(1,1))

Two data sets (friend and advice), for friend

# We'll use the "task" and "social" sub-graphs together as the
# basis for our structural equivalence methods. First, we'll use
# the task graph to generate an adjacency matrix.
#
# This matrix represents task interactions directed FROM the 
# row individual TO the column individual. 
krack_friend_matrix_row_to_col <- get.adjacency(krack_friend, attr='friendship_tie')
krack_friend_matrix_row_to_col

# To operate on a binary graph, simply leave off the "attr" 
# parameter:
krack_friend_matrix_row_to_col_bin <- get.adjacency(krack_friend)
krack_friend_matrix_row_to_col_bin

# For this lab, we'll use the valued graph. The next step is to 
# concatenate it with its transpose in order to capture both 
# incoming and outgoing task interactions.
krack_friend_matrix_col_to_row <- t(as.matrix(krack_friend_matrix_row_to_col))
krack_friend_matrix_col_to_row

krack_friend_matrix <- rbind(krack_friend_matrix_row_to_col, krack_friend_matrix_col_to_row)
krack_friend_matrix
> krack_friend_matrix_row_to_col <- get.adjacency(krack_friend, attr='friendship_tie')
> krack_friend_matrix_row_to_col
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . .
2  1 . . . . . . . . . . . . . . . . 1 . . 1
3  . . . . . . . . . . . . . 1 . . . . 1 . .
4  1 1 . . . . . 1 . . . 1 . . . 1 1 . . . .
5  . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1
6  . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . 1 . . . . . . . . . . . . . . . . .
9  . . . . . . . . . . . . . . . . . . . . .
10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 .
11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . .
12 1 . . 1 . . . . . . . . . . . . 1 . . . 1
13 . . . . 1 . . . . . 1 . . . . . . . . . .
14 . . . . . . 1 . . . . . . . 1 . . . . . .
15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . .
16 1 1 . . . . . . . . . . . . . . . . . . .
17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1
18 . 1 . . . . . . . . . . . . . . . . . . .
19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 .
20 . . . . . . . . . . 1 . . . . . . 1 . . .
21 . 1 . . . . . . . . . 1 . . . . 1 1 . . .
> 
> # To operate on a binary graph, simply leave off the "attr" 
> # parameter:
> krack_friend_matrix_row_to_col_bin <- get.adjacency(krack_friend)
> krack_friend_matrix_row_to_col_bin
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . .
2  1 . . . . . . . . . . . . . . . . 1 . . 1
3  . . . . . . . . . . . . . 1 . . . . 1 . .
4  1 1 . . . . . 1 . . . 1 . . . 1 1 . . . .
5  . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1
6  . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . 1 . . . . . . . . . . . . . . . . .
9  . . . . . . . . . . . . . . . . . . . . .
10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 .
11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . .
12 1 . . 1 . . . . . . . . . . . . 1 . . . 1
13 . . . . 1 . . . . . 1 . . . . . . . . . .
14 . . . . . . 1 . . . . . . . 1 . . . . . .
15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . .
16 1 1 . . . . . . . . . . . . . . . . . . .
17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1
18 . 1 . . . . . . . . . . . . . . . . . . .
19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 .
20 . . . . . . . . . . 1 . . . . . . 1 . . .
21 . 1 . . . . . . . . . 1 . . . . 1 1 . . .
> 
> # For this lab, we'll use the valued graph. The next step is to 
> # concatenate it with its transpose in order to capture both 
> # incoming and outgoing task interactions.
> krack_friend_matrix_col_to_row <- t(as.matrix(krack_friend_matrix_row_to_col))
> krack_friend_matrix_col_to_row
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1  0 1 0 1 0 0 0 0 0  0  1  1  0  0  1  1  1  0  1  0  0
2  1 0 0 1 1 1 0 0 0  0  1  0  0  0  0  1  1  1  1  0  1
3  0 0 0 0 0 0 0 0 0  1  1  0  0  0  1  0  1  0  1  0  0
4  1 0 0 0 0 0 0 1 0  0  1  1  0  0  0  0  1  0  0  0  0
5  0 0 0 0 0 0 0 0 0  1  1  0  1  0  1  0  1  0  1  0  0
6  0 0 0 0 0 0 0 0 0  0  0  0  0  0  1  0  1  0  0  0  0
7  0 0 0 0 0 1 0 0 0  0  0  0  0  1  0  0  1  0  0  0  0
8  1 0 0 1 0 0 0 0 0  1  1  0  0  0  0  0  1  0  0  0  0
9  0 0 0 0 1 1 0 0 0  1  1  0  0  0  1  0  1  0  0  0  0
10 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  1  0  0  0  0
11 0 0 0 0 1 0 0 0 0  0  0  0  1  0  1  0  1  0  1  1  0
12 1 0 0 1 0 1 0 0 0  1  1  0  0  0  0  0  1  0  1  0  1
13 0 0 0 0 0 0 0 0 0  0  1  0  0  0  0  0  0  0  0  0  0
14 0 0 1 0 1 0 0 0 0  0  0  0  0  0  1  0  1  0  1  0  0
15 0 0 0 0 0 0 0 0 0  0  1  0  0  1  0  0  1  0  1  0  0
16 1 0 0 1 0 0 0 0 0  1  0  0  0  0  0  0  1  0  0  0  0
17 0 0 0 1 1 1 0 0 0  0  1  1  0  0  0  0  0  0  0  0  1
18 0 1 0 0 0 0 0 0 0  0  1  0  0  0  0  0  0  0  0  1  1
19 0 0 1 0 1 0 0 0 0  0  1  0  0  0  1  0  1  0  0  0  0
20 0 0 0 0 0 0 0 0 0  1  0  0  0  0  0  0  1  0  1  0  0
21 0 1 0 0 1 1 0 0 0  0  0  1  0  0  0  0  1  0  0  0  0
> 
> krack_friend_matrix <- rbind(krack_friend_matrix_row_to_col, krack_friend_matrix_col_to_row)
> krack_friend_matrix
42 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . .
2  1 . . . . . . . . . . . . . . . . 1 . . 1
3  . . . . . . . . . . . . . 1 . . . . 1 . .
4  1 1 . . . . . 1 . . . 1 . . . 1 1 . . . .
5  . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1
6  . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1
7  . . . . . . . . . . . . . . . . . . . . .
8  . . . 1 . . . . . . . . . . . . . . . . .
9  . . . . . . . . . . . . . . . . . . . . .
10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 .
11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . .
12 1 . . 1 . . . . . . . . . . . . 1 . . . 1
13 . . . . 1 . . . . . 1 . . . . . . . . . .
14 . . . . . . 1 . . . . . . . 1 . . . . . .
15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . .
16 1 1 . . . . . . . . . . . . . . . . . . .
17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1
18 . 1 . . . . . . . . . . . . . . . . . . .
19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 .
20 . . . . . . . . . . 1 . . . . . . 1 . . .
21 . 1 . . . . . . . . . 1 . . . . 1 1 . . .
1  . 1 . 1 . . . . . . 1 1 . . 1 1 1 . 1 . .
2  1 . . 1 1 1 . . . . 1 . . . . 1 1 1 1 . 1
3  . . . . . . . . . 1 1 . . . 1 . 1 . 1 . .
4  1 . . . . . . 1 . . 1 1 . . . . 1 . . . .
5  . . . . . . . . . 1 1 . 1 . 1 . 1 . 1 . .
6  . . . . . . . . . . . . . . 1 . 1 . . . .
7  . . . . . 1 . . . . . . . 1 . . 1 . . . .
8  1 . . 1 . . . . . 1 1 . . . . . 1 . . . .
9  . . . . 1 1 . . . 1 1 . . . 1 . 1 . . . .
10 . . . . . . . . . . . . . . . . 1 . . . .
11 . . . . 1 . . . . . . . 1 . 1 . 1 . 1 1 .
12 1 . . 1 . 1 . . . 1 1 . . . . . 1 . 1 . 1
13 . . . . . . . . . . 1 . . . . . . . . . .
14 . . 1 . 1 . . . . . . . . . 1 . 1 . 1 . .
15 . . . . . . . . . . 1 . . 1 . . 1 . 1 . .
16 1 . . 1 . . . . . 1 . . . . . . 1 . . . .
17 . . . 1 1 1 . . . . 1 1 . . . . . . . . 1
18 . 1 . . . . . . . . 1 . . . . . . . . 1 1
19 . . 1 . 1 . . . . . 1 . . . 1 . 1 . . . .
20 . . . . . . . . . 1 . . . . . . 1 . 1 . .
21 . 1 . . 1 1 . . . . . 1 . . . . 1 . . . .
> 
> 

for advice matrix

# Next, we'll use the same procedure to add social-interaction
# information.
krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie')
krack_advice_matrix_row_to_col
 
krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice)
krack_advice_matrix_row_to_col_bin
 
krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col))
krack_advice_matrix_col_to_row
 
krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row)
krack_advice_matrix
> krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie')
> krack_advice_matrix_row_to_col
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1
2  . . . . . 1 1 . . . . . . . . . . . . . 1
3  1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1
4  1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1
5  1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1
6  . . . . . . . . . . . . . . . . . . . . 1
7  . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1
8  . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1
9  1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1
10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 .
11 1 1 . . . . 1 . . . . . . . . . . . . . .
12 . . . . . . 1 . . . . . . . . . . . . . 1
13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . .
14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1
16 1 1 . . . . . . . 1 . . . . . . . 1 . . .
17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1
18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1
19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 .
20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1
21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 .
> 
> krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice)
> krack_advice_matrix_row_to_col_bin
21 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1
2  . . . . . 1 1 . . . . . . . . . . . . . 1
3  1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1
4  1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1
5  1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1
6  . . . . . . . . . . . . . . . . . . . . 1
7  . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1
8  . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1
9  1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1
10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 .
11 1 1 . . . . 1 . . . . . . . . . . . . . .
12 . . . . . . 1 . . . . . . . . . . . . . 1
13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . .
14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1
16 1 1 . . . . . . . 1 . . . . . . . 1 . . .
17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1
18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1
19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 .
20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1
21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 .
> 
> krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col))
> krack_advice_matrix_col_to_row
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1  0 0 1 1 1 0 0 0 1  1  1  0  1  0  1  1  1  1  1  1  0
2  1 0 1 1 1 0 1 1 1  1  1  0  1  1  1  1  1  1  1  1  1
3  0 0 0 0 0 0 0 0 0  1  0  0  0  0  1  0  0  1  1  0  1
4  1 0 1 0 0 0 0 1 0  1  0  0  0  0  1  0  1  1  0  0  1
5  0 0 0 0 0 0 0 0 0  1  0  0  1  0  1  0  0  1  1  0  0
6  0 1 1 1 1 0 1 1 1  0  0  0  0  0  1  0  0  0  0  1  1
7  0 1 1 0 1 0 0 1 1  0  1  1  0  1  1  0  1  1  1  0  1
8  1 0 1 1 1 0 0 0 1  1  0  0  0  0  1  0  0  1  0  1  1
9  0 0 1 0 0 0 0 0 0  0  0  0  1  0  1  0  0  1  0  0  0
10 0 0 1 1 1 0 0 1 1  0  0  0  0  0  1  1  0  1  1  0  0
11 0 0 1 1 1 0 1 1 1  1  0  0  0  0  1  0  0  1  1  1  0
12 0 0 1 1 0 0 1 0 1  0  0  0  0  0  1  0  0  0  0  1  1
13 0 0 0 0 1 0 0 0 0  1  0  0  0  0  1  0  0  1  0  0  0
14 0 0 1 0 1 0 1 0 1  0  0  0  1  0  1  0  0  1  1  1  1
15 0 0 0 0 0 0 0 0 0  1  0  0  0  0  0  0  0  1  1  1  0
16 1 0 0 1 1 0 0 0 1  1  0  0  0  0  1  0  0  1  0  1  0
17 0 0 1 1 1 0 1 0 1  1  0  0  0  0  1  0  0  0  0  1  1
18 1 0 1 1 1 0 1 1 1  1  0  0  1  1  1  1  0  0  1  1  1
19 0 0 0 0 1 0 0 0 0  1  0  0  0  0  1  0  0  1  0  0  0
20 0 0 1 1 1 0 0 0 0  1  0  0  0  0  1  0  0  1  1  0  1
21 1 1 1 1 1 1 1 1 1  0  0  1  0  1  1  0  1  1  0  1  0
> 
> krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row)
> krack_advice_matrix
42 x 21 sparse Matrix of class "dgCMatrix"
   [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]]
                                            
1  . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1
2  . . . . . 1 1 . . . . . . . . . . . . . 1
3  1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1
4  1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1
5  1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1
6  . . . . . . . . . . . . . . . . . . . . 1
7  . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1
8  . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1
9  1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1
10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 .
11 1 1 . . . . 1 . . . . . . . . . . . . . .
12 . . . . . . 1 . . . . . . . . . . . . . 1
13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . .
14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1
16 1 1 . . . . . . . 1 . . . . . . . 1 . . .
17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1
18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1
19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 .
20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1
21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 .
1  . . 1 1 1 . . . 1 1 1 . 1 . 1 1 1 1 1 1 .
2  1 . 1 1 1 . 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1
3  . . . . . . . . . 1 . . . . 1 . . 1 1 . 1
4  1 . 1 . . . . 1 . 1 . . . . 1 . 1 1 . . 1
5  . . . . . . . . . 1 . . 1 . 1 . . 1 1 . .
6  . 1 1 1 1 . 1 1 1 . . . . . 1 . . . . 1 1
7  . 1 1 . 1 . . 1 1 . 1 1 . 1 1 . 1 1 1 . 1
8  1 . 1 1 1 . . . 1 1 . . . . 1 . . 1 . 1 1
9  . . 1 . . . . . . . . . 1 . 1 . . 1 . . .
10 . . 1 1 1 . . 1 1 . . . . . 1 1 . 1 1 . .
11 . . 1 1 1 . 1 1 1 1 . . . . 1 . . 1 1 1 .
12 . . 1 1 . . 1 . 1 . . . . . 1 . . . . 1 1
13 . . . . 1 . . . . 1 . . . . 1 . . 1 . . .
14 . . 1 . 1 . 1 . 1 . . . 1 . 1 . . 1 1 1 1
15 . . . . . . . . . 1 . . . . . . . 1 1 1 .
16 1 . . 1 1 . . . 1 1 . . . . 1 . . 1 . 1 .
17 . . 1 1 1 . 1 . 1 1 . . . . 1 . . . . 1 1
18 1 . 1 1 1 . 1 1 1 1 . . 1 1 1 1 . . 1 1 1
19 . . . . 1 . . . . 1 . . . . 1 . . 1 . . .
20 . . 1 1 1 . . . . 1 . . . . 1 . . 1 1 . 1
21 1 1 1 1 1 1 1 1 1 . . 1 . 1 1 . 1 1 . 1 .
> 

combining the two (friend and advice)

# combine the two with rbind function
krack_friend_advice_matrix <- rbind(krack_friend_matrix, krack_advice_matrix)
krack_friend_advice_matrix

correlation matrix out of the combined matrix (friend and advice)

# Now we have a single 4n x n matrix that represents both in- and
# out-directed task and social communication. From this, we can
# generate an n x n correlation matrix that shows the degree of
# structural equivalence of each actor in the network. 
krack_friend_advice_cors <- cor(as.matrix(krack_friend_advice_matrix))
krack_friend_to_advice_cors


# To use correlation values in hierarchical NetCluster, they must 
# first be coerced into a "dissimilarity structure" using dist().
# We subtract the values from 1 so that they are all greater than 
# or equal to 0; thus, highly dissimilar (i.e., negatively 
# correlated) actors have higher values.
dissimilarity <- 1 - krack_reports_to_advice_cors
krack_reports_to_dist <- as.dist(dissimilarity)
krack_reports_to_dist
 
# Note that it is also possible to use dist() directly on the 
# matrix. However, since cor() looks at associations between 
# columns and dist() looks at associations between rows, it is
# necessary to transpose the matrix first.
#
# A variety of distance metrics are available; Euclidean 
# is the default.
#m182_task_social_dist <- dist(t(m182_task_social_matrix))
#m182_task_social_dist
 
# hclust() performs a hierarchical agglomerative NetCluster 
# operation based on the values in the dissimilarity matrix 
# yielded by as.dist() above. The standard visualization is a 
# dendrogram. By default, hclust() agglomerates clusters via a
# "complete linkakage" algorithm, determining cluster proximity
# by looking at the distance of the two points across clusters
# that are farthest away from one another. This can be changed via
# the "method" parameter.
 
krack_reports_to_advice_hclust <- hclust(krack_reports_to_dist)
plot(krack_reports_to_advice_hclust)
 
# cutree() allows us to use the output of hclust() to set
# different numbers of clusters and assign vertices to clusters
# as appropriate. For example:
cutree(krack_reports_to_advice_hclust, k=2)
 
# Now we'll try to figure out the number of clusters that best 
# describes the underlying data. To do this, we'll loop through
# all of the possible numbers of clusters (1 through n, where n is
# the number of actors in the network). For each solution
# corresponding to a given number of clusters, we'll use cutree()
# to assign the vertices to their respective clusters 
# corresponding to that solution.
#
# From this, we can generate a matrix of within- and between-
# cluster correlations. Thus, when there is one cluster for each 
# vertex in the network, the cell values will be identical to the
# observed correlation matrix, and when there is one cluster for 
# the whole network, the values will all be equal to the average
# correlation across the observed matrix.
#
# We can then correlate each by-cluster matrix with the observed
# correlation matrix to see how well the by-cluster matrix fits
# the data. We'll store the correlation for each number of
# clusters in a vector, which we can then plot.
 
# First, we initialize a vector for storing the correlations and 
# set a variable for our number of vertices.
clustered_observed_cors = vector()
num_vertices = length(V(krack_reports_to))
 
# Next, we loop through the different possible cluster 
# configurations, produce matrices of within- and between-
# cluster correlations, and correlate these by-cluster matrices
# with the observed correlation matrix.
 
# pdf("6.3_m182_studentnet_task_social_clustered_observed_corrs.pdf")
clustered_observed_cors <-clustConfigurations(num_vertices, krack_reports_to_advice_hclust, krack_reports_to_advice_cors)
clustered_observed_cors
plot(clustered_observed_cors$correlations)
# dev.off()
 
clustered_observed_cors$correlations
# From a visual inspection of the correlation matrix, we can 
# decide on the proper number of clusters in this network. 
# For this network, we'll use 4. (Note that the 1-cluster 
# solution doesn't appear on the plot because its correlation 
# with the observed correlation matrix is undefined.)
num_clusters = 4
clusters <- cutree(krack_reports_to_advice_hclust, k = num_clusters)
clusters
 
cluster_cor_mat <- clusterCorr(krack_reports_to_advice_cors,
                                            clusters)
cluster_cor_mat
 
# Let's look at the correlation between this cluster configuration 
# and the observed correlation matrix. This should match the 
# corresponding value from clustered_observed_cors above.
gcor(cluster_cor_mat, krack_reports_to_advice_cors)
 
#####################
# Questions:
# (1) What rationale do you have for selecting the number of 
# clusters / positions that you do?
#####################
  


### NOTE ON DEDUCTIVE CLUSTERING

# It's pretty straightforward, using the code above, to explore
# your own deductive NetCluster. Simply supply your own cluster
# vector, where the elements in the vector are in the same order
# as the vertices in the matrix, and the values represent the
# cluster to which each vertex belongs. 
#
# For example, if you believed that actors 2, 7, and 8 formed one
# group, actor 16 former another group, and everyone else formed 
# a third group, you could represent this as follows:
deductive_clusters = c(1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1,
                       1, 3)

# You could then examine the fitness of this cluster configuration
# as follows:
deductive_cluster_cor_mat <- generate_cluster_cor_mat(
  krack_reports_to_advice_cors,
  deductive_clusters)
deductive_cluster_cor_mat
gcor(deductive_cluster_cor_mat, krack_reports_to_advice_cors)

### END NOTE ON DEDUCTIVE CLUSTERING

# Now we'll use the 4-cluster solution to generate blockmodels, 
# using the raw tie data from the underlying task and social 
# networks.

# Task valued
task_mean <- mean(as.matrix(krack_reports_to_matrix_row_to_col)_
task_mean

task_valued_blockmodel <- blockmodel(krack_reports_to_matrix_row_to_col, clusters)
task_valued_blockmodel

# Task binary
task_density <- graph.density(krack_reports_to)
task_density

task_binary_blockmodel <- blockmodel(as.matrix(krack_reports_to_matrix_row_to_col_bin), clusters)
task_binary_blockmodel


# Social valued
advice_mean <- mean(as.matrix(krack_advice_matrix_row_to_col))
advice_mean

advice_valued_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col), clusters)
advice_valued_blockmodel

# Social binary
advice_density <- graph.density(krack_advice)
advice_density

advice_binary_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col_bin), clusters)
advice_binary_blockmodel

# We can also permute the network to examine the within- and 
# between-cluster correlations. 

cluster_cor_mat_per <- permute_matrix(clusters, cluster_cor_mat)
cluster_cor_mat_per


#####################
# Questions:
# (2) What is the story you get from viewing these clusters, 
# and their within and between cluster densities on task and 
# social interaction? What can you say about M182 from this?
#####################
#####################
# Questions:
# (3) What does clustering of the triadic census afford us? 
# What roles do you see? Redo the initial blockmodel analysis
# without social interaction (only task) and then compare to 
# this solution. Do they differ? 
#
# Extra credit: Try running the triad census on task AND 
# social interaction separately and then correlating persons. 
# What result do you get? Is it different from our initial 
# blockmodel result? Show your code.  
######################
 
 
 
###
# 5. FACTOR ANALYSIS
###
 
# Note that although we are conducting a principal components
# analysis (PCA), which is technically not exactly the same as
# factor analysis, we will use the term "factor" to describe the
# individual components in our PCA. 
 
# PCA is often used in network analysis as a form of detecting 
# individuals global positioning. We say "global" because these
# clusters aren't defined on local cohesion but from the overall 
# pattern of ties individuals have with all others (structural 
# equivalence). Identifying the first two largest components that
# organize the variance in tie patterns is one way of doing this.
 
# We'll analyze the 4n x n matrix generated above.
 
# First, we want to determine the ideal number of components
# (factors) to extract. We'll do this by examining the eigenvalues
# in a scree plot and examining how each number of factors stacks
# up to a few proposed non-graphical solutions to selecting the
# optimal number of components, available via the nFactors
# package. 
ev <- eigen(cor(as.matrix(krack_reports_to_advice_matrix))) # get eigenvalues
ap <- parallel(subject=nrow(krack_reports_to_advice_matrix),
        var=ncol(krack_reports_to_advice_matrix),
        rep=100,cent=.05)
nS <- nScree(ev$values, ap$eigen$qevpea)
 
# pdf("6.6_m182_studentnet_task_social_pca_scree.pdf")
plotnScree(nS) 

# To draw a line across the graph where eigenvalues are = 1,
# use the following code:
plotnScree(nS) 
abline(h=1)
# dev.off()


# For more information on this procedure, please see 
# the references provided in the parallel() documentation
# (type "?parallel" in the R command line with the package
# loaded).

# Now we'll run a principal components analysis on the matrix,
# using the number of factors determined above (note this may not
# be the same number as you get):
pca_krack_reports_to_advice = principal(as.matrix(krack_reports_to_advice_matrix), nfactors=5, rotate="varimax") 

# Let's take a look at the results in the R terminal:
pca_krack_reports_to_advice 

# You can see the standardized loadings for each factor for each
# node. Note that R sometimes puts the factors in a funky order
# (e.g. RC1, RC2, RC5, RC4, RC3) but all of the factors are there.
# You can see that the SS loadings, proportion of variance
# explained and cumulative variance explained is provided below. A
# Chi Square test of the factors and various other statistics are
# provided below. 

# Note that the eigenvalues can be accessed via the following
# command:
pca_krack_reports_to_advice$values

# Now we will use the factor loadings to cluster and compare that
# to our other NetCluster techniques, using dendrograms.

# Take the distance based on Euclidian Distance
krack_reports_to_factor_dist = dist(pca_krack_reports_to_advice$loadings)

# And cluster
krack_reports_to_factor_hclust <- hclust(krack_reports_to_factor_dist)

# pdf("6.7_m182_studentnet_task_social_pca_hclust.pdf")
plot(krack_reports_to_factor_hclust)
# dev.off()

# And compare to NetCluster based on correlations and triads:
# pdf("6.8_m182_task_cluster_by_correlation_PCA_Triads.pdf")
par(mfrow = c(1,2))
plot(krack_reports_to_advice_hclust, main = "Correlation")
plot(krack_reports_to_factor_hclust, main = "PCA")
# plot(m182_task_triad_hclust, main = "Triads")
par(mfrow = c(1,1))

# dev.off()



#####################
# Questions:
# (4) How do the results across blockmodel techniques differ? 
# Why might you use one over the other? Why might you want to 
# run more than one in your analyses?
#####################
krackhardt_datasets.1575415093.txt.gz · Last modified: 2019/12/04 08:18 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki