mean_and_variance_of_binomial_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mean_and_variance_of_binomial_distribution [2025/10/01 07:03] – [Proof of Binomial Expected Value, from a scratch] hkimscilmean_and_variance_of_binomial_distribution [2025/10/06 23:50] (current) – [Proof of Binomial Expected Value, from a scratch] hkimscil
Line 1: Line 1:
-====== Proof of Binomial Expected Valuefrom scratch ====== +====== Proof of Binomial Expected Value and Variance (from scratch====== 
 +이항분포에서의 평균과 분산 증명
 see [[:The Binomial Theorem]] see [[:The Binomial Theorem]]
  
Line 10: Line 10:
 위의 식이 복잡해 보이지만 m = 3 일때 이항정리식이 아래처럼 전개됨을 뜻한다. 위의 식이 복잡해 보이지만 m = 3 일때 이항정리식이 아래처럼 전개됨을 뜻한다.
 \begin{align*} \begin{align*}
-\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \text{m = 3} \\+\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \;\;\; \dots \;\;\; \text{m = 3} \\
 \end{align*} \end{align*}
  
Line 32: Line 32:
 ====== For Mean ====== ====== For Mean ======
 \begin{eqnarray*} \begin{eqnarray*}
-E(X) & = & \sum_{x}x p(x) \;\;\; \because \; p(x) = {{n}\choose{x}} p^x (1-p)^{n-x} \\+E(X) & = & \sum_{x}x p(x) \;\;\; \because \; p(x) = {{n}\choose{x}} p^x (1-p)^{n-x} \;\;\; \text{, binomial probability} \\
 & = & \sum_{x=0}^{n} x {{n} \choose {x}} p^x(1-p)^{n-x}  \\ & = & \sum_{x=0}^{n} x {{n} \choose {x}} p^x(1-p)^{n-x}  \\
 & = & \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^x(1-p)^{n-x}  \\ & = & \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^x(1-p)^{n-x}  \\
mean_and_variance_of_binomial_distribution.1759269786.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki