User Tools

Site Tools


multiple_regression_examples

Multiple Regression with Two Predictor Variables

data file: mlt06.sav from http://www.psychstat.missouristate.edu/multibook/mlt06.htm

  • Y1 - A measure of success in graduate school.
  • X1 - A measure of intellectual ability.
  • X2 - A measure of “work ethic.”
  • X3 - A second measure of intellectual ability.
  • X4 - A measure of spatial ability.
  • Y2 - Score on a major review paper.
Analyze
 Descriptive statistics
  Descriptives
   모든 변수를 Variable(s)로 이동 
    OK 누르기
Descriptive Statistics					
				N	Minimum	Maximum	Mean	Std. Deviation
sucess in graduate school	20	125	230	169.45	24.517
score on a major review paper	20	105	135	120.50	8.918
intellectual ability I		20	11	64	37.05	14.891
work ethic			20	11	56	29.10	14.056
intellectual ability II		20	17	79	49.35	18.622
spatial ability			20	11	56	32.50	13.004
Valid N (listwise)		20				

Correlation matrix 검사

Analyze
 Correlate
  Bivariate
   모든 변수를 Variable(s)로 이동
  
Correlations
				y1	y2	x1	x2	x3	x4
y1	Pearson Correlation	1	.310	.764**	.769**	.687**	.736**
	Sig. (2-tailed)		.184	.000	.000	.001	.000
	N			20	20	20	20	20	20
y2	Pearson Correlation	.310	1	.251	.334	.168	.018
	Sig. (2-tailed)		.184		.286	.150	.479	.939
	N			20	20	20	20	20	20
x1	Pearson Correlation	.764**	.251	1	.255	.940**	.904**
	Sig. (2-tailed)		.000	.286		.278	.000	.000
	N			20	20	20	20	20	20
x2	Pearson Correlation	.769**	.334	.255	1	.243	.266
	Sig. (2-tailed)		.000	.150	.278		.302	.257
	N			20	20	20	20	20	20
x3	Pearson Correlation	.687**	.168	.940**	.243	1	.847**
	Sig. (2-tailed)		.001	.479	.000	.302		.000
	N			20	20	20	20	20	20
x4	Pearson Correlation	.736**	.018	.904**	.266	.847**	1
	Sig. (2-tailed)		.000	.939	.000	.257	.000	
	N			20	20	20	20	20	20
** Correlation is significant at the 0.01 level (2-tailed).

Regression

Analyze
 Regression
  Linear
   Dependent: 	y1 (success in graduate school)
   Independent:	x1 (intell. ability) 
		x2 (work ethic)
   Click Statistics (오른쪽 상단 버튼)
    Choose
     Estimates (under Regression Coefficients)
     Model fit
     R squared change
     Descriptives
     Part and partial correlations
     Collinearity diagnostics    
Model Summaryb
							Change Statistics	
Model	R	R	Adjusted	Std. Error	R  	F 	df1	df2	Sig. F 
		Square	R Square	of the 		Square	Change			Change
					Estimate	Change
1	.968a	.936	.929		6.541		.936	124.979	2	17	.000
a Predictors: (Constant), work ethic, intellectual ability I
b Dependent Variable: success in graduate school
ANOVAa						
Model			Sum of Squares	df	Mean Square	F		Sig.
1	Regression	10693.657	2	5346.828	124.979		.000b
	Residual	727.293		17	42.782		
	Total		11420.950	19			
a Dependent Variable: sucess in graduate school						
b Predictors: (Constant), work ethic, intellectual ability I						
Coefficientsa
Model		Unstandardized 	Standardized 		Correlations		Collinearity 
		Coefficients	Coefficients					Statistics
		-------------	-----	------------	--------------------	---------	----
		B	Std. 	Beta	t	Sig.	Zero	Partial	Part	Tolerance	VIF
			Error					-order	
1 (Constant)	101.222	4.587		22.065	.000					
  x1		1.000	.104	.608	9.600	.000	.764	.919	.588	.935		1.070
  x3		1.071	.110	.614	9.699	.000	.769	.920	.594	.935		1.070
a Dependent Variable: success in graduate school
x1  intellectual ability I
x3  work ethic

from the above output:

x zero-order cor part cor squared zero-order cor squared part cor shared square cor
x1 .764 .588 0.583696 0.345744 0.237952
x2 .769 .594 0.591361 0.352836 0.238525

note that the values of two raws at the last column are similar. The portion is the shared effects from both x1 and x2.

$$ \hat{Y_{i}} = 101.222 + 1.000X1_{i} + 1.071X2_{i} $$

$$ \hat{Y_{i}} = 101.222 + 1.000 \ \text{intell. ability}_{i} + 1.071 \ \text{work ethic}_{i} $$

E.g. 2

?state.x77

US State Facts and Figures

Description

Data sets related to the 50 states of the United States of America.

Usage

state.abb
state.area
state.center
state.division
state.name
state.region
state.x77
Details

R currently contains the following “state” data sets. Note that all data are arranged according to alphabetical order of the state names.

state.abb:
character vector of 2-letter abbreviations for the state names.

state.area:
numeric vector of state areas (in square miles).

state.center:
list with components named x and y giving the approximate geographic center of each state in negative longitude and latitude. Alaska and Hawaii are placed just off the West Coast.

state.division:
factor giving state divisions (New England, Middle Atlantic, South Atlantic, East South Central, West South Central, East North Central, West North Central, Mountain, and Pacific).

state.name:
character vector giving the full state names.

state.region:
factor giving the region (Northeast, South, North Central, West) that each state belongs to.

state.x77:
matrix with 50 rows and 8 columns giving the following statistics in the respective columns.

Population:
population estimate as of July 1, 1975

Income:
per capita income (1974)

Illiteracy:
illiteracy (1970, percent of population)

Life Exp:
life expectancy in years (1969–71)

Murder:
murder and non-negligent manslaughter rate per 100,000 population (1976)

HS Grad:
percent high-school graduates (1970)

Frost:
mean number of days with minimum temperature below freezing (1931–1960) in capital or large city

Area:
land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the United States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

> state.x77                            # output not shown
> str(state.x77)                       # clearly not a data frame! (it's a matrix)
> st = as.data.frame(state.x77)        # so we'll make it one
> str(st)
'data.frame':   50 obs. of  8 variables:
 $ Population: num   3615   365  2212  2110 21198 ...
 $ Income    : num  3624 6315 4530 3378 5114 ...
 $ Illiteracy: num  2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
 $ Life Exp  : num  69.0 69.3 70.5 70.7 71.7 ...
 $ Murder    : num  15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 ...
 $ HS Grad   : num  41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 ...
 $ Frost     : num  20 152 15 65 20 166 139 103 11 60 ...
 $ Area      : num   50708 566432 113417  51945 156361 ...
> colnames(st)[4] = "Life.Exp"                   # no spaces in variable names, please
> colnames(st)[6] = "HS.Grad"                    # ditto
> st$Density = st$Population * 1000 / st$Area    # create a new column in st
> summary(st)
   Population        Income       Illiteracy       Life.Exp         Murder      
 Min.   :  365   Min.   :3098   Min.   :0.500   Min.   :67.96   Min.   : 1.400  
 1st Qu.: 1080   1st Qu.:3993   1st Qu.:0.625   1st Qu.:70.12   1st Qu.: 4.350  
 Median : 2838   Median :4519   Median :0.950   Median :70.67   Median : 6.850  
 Mean   : 4246   Mean   :4436   Mean   :1.170   Mean   :70.88   Mean   : 7.378  
 3rd Qu.: 4968   3rd Qu.:4814   3rd Qu.:1.575   3rd Qu.:71.89   3rd Qu.:10.675  
 Max.   :21198   Max.   :6315   Max.   :2.800   Max.   :73.60   Max.   :15.100  
    HS.Grad          Frost             Area           Density        
 Min.   :37.80   Min.   :  0.00   Min.   :  1049   Min.   :  0.6444  
 1st Qu.:48.05   1st Qu.: 66.25   1st Qu.: 36985   1st Qu.: 25.3352  
 Median :53.25   Median :114.50   Median : 54277   Median : 73.0154  
 Mean   :53.11   Mean   :104.46   Mean   : 70736   Mean   :149.2245  
 3rd Qu.:59.15   3rd Qu.:139.75   3rd Qu.: 81162   3rd Qu.:144.2828  
 Max.   :67.30   Max.   :188.00   Max.   :566432   Max.   :975.0033
> cor(st)                              # correlation matrix (not shown, yet)
> round(cor(st), 3)                    # rounding makes it easier to look at
           Population Income Illiteracy Life.Exp Murder HS.Grad  Frost   Area Density
Population      1.000  0.208      0.108   -0.068  0.344  -0.098 -0.332  0.023   0.246
Income          0.208  1.000     -0.437    0.340 -0.230   0.620  0.226  0.363   0.330
Illiteracy      0.108 -0.437      1.000   -0.588  0.703  -0.657 -0.672  0.077   0.009
Life.Exp       -0.068  0.340     -0.588    1.000 -0.781   0.582  0.262 -0.107   0.091
Murder          0.344 -0.230      0.703   -0.781  1.000  -0.488 -0.539  0.228  -0.185
HS.Grad        -0.098  0.620     -0.657    0.582 -0.488   1.000  0.367  0.334  -0.088
Frost          -0.332  0.226     -0.672    0.262 -0.539   0.367  1.000  0.059   0.002
Area            0.023  0.363      0.077   -0.107  0.228   0.334  0.059  1.000  -0.341
Density         0.246  0.330      0.009    0.091 -0.185  -0.088  0.002 -0.341   1.000
>
> pairs(st)                            # scatterplot matrix; plot(st) does the same thing

> ### model1 = lm(Life.Exp ~ Population + Income + Illiteracy + Murder +
+ ###                        HS.Grad + Frost + Area + Density, data=st)
> ### This is what we're going to accomplish, but more economically, by
> ### simply placing a dot after the tilde, which means "everything else."
> model1 = lm(Life.Exp ~ ., data=st)
> summary(model1)

Call:
lm(formula = Life.Exp ~ ., data = st)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.47514 -0.45887 -0.06352  0.59362  1.21823 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  6.995e+01  1.843e+00  37.956  < 2e-16 ***
Population   6.480e-05  3.001e-05   2.159   0.0367 *  
Income       2.701e-04  3.087e-04   0.875   0.3867    
Illiteracy   3.029e-01  4.024e-01   0.753   0.4559    
Murder      -3.286e-01  4.941e-02  -6.652 5.12e-08 ***
HS.Grad      4.291e-02  2.332e-02   1.840   0.0730 .  
Frost       -4.580e-03  3.189e-03  -1.436   0.1585    
Area        -1.558e-06  1.914e-06  -0.814   0.4205    
Density     -1.105e-03  7.312e-04  -1.511   0.1385    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7337 on 41 degrees of freedom
Multiple R-squared:  0.7501,	Adjusted R-squared:  0.7013 
F-statistic: 15.38 on 8 and 41 DF,  p-value: 3.787e-10
> summary.aov(model1)
            Df Sum Sq Mean Sq F value   Pr(>F)    
Population   1  0.409   0.409   0.760  0.38849    
Income       1 11.595  11.595  21.541 3.53e-05 ***
Illiteracy   1 19.421  19.421  36.081 4.23e-07 ***
Murder       1 27.429  27.429  50.959 1.05e-08 ***
HS.Grad      1  4.099   4.099   7.615  0.00861 ** 
Frost        1  2.049   2.049   3.806  0.05792 .  
Area         1  0.001   0.001   0.002  0.96438    
Density      1  1.229   1.229   2.283  0.13847    
Residuals   41 22.068   0.538                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 

Model fitting

> model2 = update(model1, .~. -Area)
> summary(model2)

Call:
lm(formula = Life.Exp ~ Population + Income + Illiteracy + Murder + 
    HS.Grad + Frost + Density, data = st)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.50252 -0.40471 -0.06079  0.58682  1.43862 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  7.094e+01  1.378e+00  51.488  < 2e-16 ***
Population   6.249e-05  2.976e-05   2.100   0.0418 *  
Income       1.485e-04  2.690e-04   0.552   0.5840    
Illiteracy   1.452e-01  3.512e-01   0.413   0.6814    
Murder      -3.319e-01  4.904e-02  -6.768 3.12e-08 ***
HS.Grad      3.746e-02  2.225e-02   1.684   0.0996 .  
Frost       -5.533e-03  2.955e-03  -1.873   0.0681 .  
Density     -7.995e-04  6.251e-04  -1.279   0.2079    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7307 on 42 degrees of freedom
Multiple R-squared:  0.746,	Adjusted R-squared:  0.7037 
F-statistic: 17.63 on 7 and 42 DF,  p-value: 1.173e-10
> anova(model2, model1)    
Analysis of Variance Table

Model 1: Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + 
    Frost + Density
Model 2: Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + 
    Frost + Area + Density
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     42 22.425                           
2     41 22.068  1   0.35639 0.6621 0.4205
> model3 = update(model2, .~. -Illiteracy)
> summary(model3)


Call:
lm(formula = Life.Exp ~ Population + Income + Murder + HS.Grad + 
    Frost + Density, data = st)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.49555 -0.41246 -0.05336  0.58399  1.50535 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  7.131e+01  1.042e+00  68.420  < 2e-16 ***
Population   5.811e-05  2.753e-05   2.110   0.0407 *  
Income       1.324e-04  2.636e-04   0.502   0.6181    
Murder      -3.208e-01  4.054e-02  -7.912 6.32e-10 ***
HS.Grad      3.499e-02  2.122e-02   1.649   0.1065    
Frost       -6.191e-03  2.465e-03  -2.512   0.0158 *  
Density     -7.324e-04  5.978e-04  -1.225   0.2272    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7236 on 43 degrees of freedom
Multiple R-squared:  0.745,	Adjusted R-squared:  0.7094 
F-statistic: 20.94 on 6 and 43 DF,  p-value: 2.632e-11

> 
> model4 = update(model3, .~. -Income)
> summary(model4)

Call:
lm(formula = Life.Exp ~ Population + Murder + HS.Grad + Frost + 
    Density, data = st)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.56877 -0.40951 -0.04554  0.57362  1.54752 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  7.142e+01  1.011e+00  70.665  < 2e-16 ***
Population   6.083e-05  2.676e-05   2.273  0.02796 *  
Murder      -3.160e-01  3.910e-02  -8.083 3.07e-10 ***
HS.Grad      4.233e-02  1.525e-02   2.776  0.00805 ** 
Frost       -5.999e-03  2.414e-03  -2.485  0.01682 *  
Density     -5.864e-04  5.178e-04  -1.132  0.26360    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7174 on 44 degrees of freedom
Multiple R-squared:  0.7435,	Adjusted R-squared:  0.7144 
F-statistic: 25.51 on 5 and 44 DF,  p-value: 5.524e-12

> model5 = update(model4, .~. -Density)
> summary(model5)


Call:
lm(formula = Life.Exp ~ Population + Murder + HS.Grad + Frost, 
    data = st)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.47095 -0.53464 -0.03701  0.57621  1.50683 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  7.103e+01  9.529e-01  74.542  < 2e-16 ***
Population   5.014e-05  2.512e-05   1.996  0.05201 .  
Murder      -3.001e-01  3.661e-02  -8.199 1.77e-10 ***
HS.Grad      4.658e-02  1.483e-02   3.142  0.00297 ** 
Frost       -5.943e-03  2.421e-03  -2.455  0.01802 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7197 on 45 degrees of freedom
Multiple R-squared:  0.736,	Adjusted R-squared:  0.7126 
F-statistic: 31.37 on 4 and 45 DF,  p-value: 1.696e-12

> 
> anova(model5, model1)
Analysis of Variance Table

Model 1: Life.Exp ~ Population + Murder + HS.Grad + Frost
Model 2: Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + 
    Frost + Area + Density
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     45 23.308                           
2     41 22.068  4    1.2397 0.5758 0.6818

Stepwise

> step(model1, direction="backward")
Start:  AIC=-22.89
Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + 
    Frost + Area + Density

             Df Sum of Sq    RSS     AIC
- Illiteracy  1    0.3050 22.373 -24.208
- Area        1    0.3564 22.425 -24.093
- Income      1    0.4120 22.480 -23.969
<none>                    22.068 -22.894
- Frost       1    1.1102 23.178 -22.440
- Density     1    1.2288 23.297 -22.185
- HS.Grad     1    1.8225 23.891 -20.926
- Population  1    2.5095 24.578 -19.509
- Murder      1   23.8173 45.886  11.707

Step:  AIC=-24.21
Life.Exp ~ Population + Income + Murder + HS.Grad + Frost + Area + 
    Density

             Df Sum of Sq    RSS     AIC
- Area        1    0.1427 22.516 -25.890
- Income      1    0.2316 22.605 -25.693
<none>                    22.373 -24.208
- Density     1    0.9286 23.302 -24.174
- HS.Grad     1    1.5218 23.895 -22.918
- Population  1    2.2047 24.578 -21.509
- Frost       1    3.1324 25.506 -19.656
- Murder      1   26.7071 49.080  13.072

Step:  AIC=-25.89
Life.Exp ~ Population + Income + Murder + HS.Grad + Frost + Density

             Df Sum of Sq    RSS     AIC
- Income      1     0.132 22.648 -27.598
- Density     1     0.786 23.302 -26.174
<none>                    22.516 -25.890
- HS.Grad     1     1.424 23.940 -24.824
- Population  1     2.332 24.848 -22.962
- Frost       1     3.304 25.820 -21.043
- Murder      1    32.779 55.295  17.033

Step:  AIC=-27.6
Life.Exp ~ Population + Murder + HS.Grad + Frost + Density

             Df Sum of Sq    RSS     AIC
- Density     1     0.660 23.308 -28.161
<none>                    22.648 -27.598
- Population  1     2.659 25.307 -24.046
- Frost       1     3.179 25.827 -23.030
- HS.Grad     1     3.966 26.614 -21.529
- Murder      1    33.626 56.274  15.910

Step:  AIC=-28.16
Life.Exp ~ Population + Murder + HS.Grad + Frost

             Df Sum of Sq    RSS     AIC
<none>                    23.308 -28.161
- Population  1     2.064 25.372 -25.920
- Frost       1     3.122 26.430 -23.877
- HS.Grad     1     5.112 28.420 -20.246
- Murder      1    34.816 58.124  15.528

Call:
lm(formula = Life.Exp ~ Population + Murder + HS.Grad + Frost, 
    data = st)

Coefficients:
(Intercept)   Population       Murder      HS.Grad        Frost  
  7.103e+01    5.014e-05   -3.001e-01    4.658e-02   -5.943e-03  

> 

Prediction

> predict(model5, list(Population=2000, Murder=10.5, HS.Grad=48, Frost=100))
       1 
69.61746

Regression Diagnostics

> par(mfrow=c(2,2))                    # visualize four graphs at once
> plot(model5)
> par(mfrow=c(1,1))                    # reset the graphics defaults

Model objects

> names(model5)
 [1] "coefficients"  "residuals"     "effects"       "rank"          "fitted.values"
 [6] "assign"        "qr"            "df.residual"   "xlevels"       "call"         
[11] "terms"         "model"
> coef(model5)                         # an extractor function
  (Intercept)    Population        Murder       HS.Grad         Frost 
 7.102713e+01  5.013998e-05 -3.001488e-01  4.658225e-02 -5.943290e-03 
> model5$coefficients                  # list indexing
  (Intercept)    Population        Murder       HS.Grad         Frost 
 7.102713e+01  5.013998e-05 -3.001488e-01  4.658225e-02 -5.943290e-03
> model5[[1]]                          # recall by position in the list (double brackets for lists)
  (Intercept)    Population        Murder       HS.Grad         Frost 
 7.102713e+01  5.013998e-05 -3.001488e-01  4.658225e-02 -5.943290e-03
> model5$resid
       Alabama         Alaska        Arizona       Arkansas     California 
    0.56888134    -0.54740399    -0.86415671     1.08626119    -0.08564599 
      Colorado    Connecticut       Delaware        Florida        Georgia 
    0.95645816     0.44541028    -1.06646884     0.04460505    -0.09694227 
        Hawaii          Idaho       Illinois        Indiana           Iowa 
    1.50683146     0.37010714    -0.05244160    -0.02158526     0.16347124 
        Kansas       Kentucky      Louisiana          Maine       Maryland 
    0.67648037     0.85582067    -0.39044846    -1.47095411    -0.29851996 
 Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
   -0.61105391     0.76106640     0.69440380    -0.91535384     0.58389969 
       Montana       Nebraska         Nevada  New Hampshire     New Jersey 
   -0.84024805     0.42967691    -0.49482393    -0.49635615    -0.66612086 
    New Mexico       New York North Carolina   North Dakota           Ohio 
    0.28880945    -0.07937149    -0.07624179     0.90350550    -0.26548767 
      Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
    0.26139958    -0.28445333    -0.95045527     0.13992982    -1.10109172 
  South Dakota      Tennessee          Texas           Utah        Vermont 
    0.06839119     0.64416651     0.92114057     0.84246817     0.57865019 
      Virginia     Washington  West Virginia      Wisconsin        Wyoming 
   -0.06691392    -0.96272426    -0.96982588     0.47004324    -0.58678863
> sort(model5$resid)                   # extract residuals and sort them
         Maine South Carolina       Delaware  West Virginia     Washington 
   -1.47095411    -1.10109172    -1.06646884    -0.96982588    -0.96272426 
  Pennsylvania    Mississippi        Arizona        Montana     New Jersey 
   -0.95045527    -0.91535384    -0.86415671    -0.84024805    -0.66612086 
 Massachusetts        Wyoming         Alaska  New Hampshire         Nevada 
   -0.61105391    -0.58678863    -0.54740399    -0.49635615    -0.49482393 
     Louisiana       Maryland         Oregon           Ohio        Georgia 
   -0.39044846    -0.29851996    -0.28445333    -0.26548767    -0.09694227 
    California       New York North Carolina       Virginia       Illinois 
   -0.08564599    -0.07937149    -0.07624179    -0.06691392    -0.05244160 
       Indiana        Florida   South Dakota   Rhode Island           Iowa 
   -0.02158526     0.04460505     0.06839119     0.13992982     0.16347124 
      Oklahoma     New Mexico          Idaho       Nebraska    Connecticut 
    0.26139958     0.28880945     0.37010714     0.42967691     0.44541028 
     Wisconsin        Alabama        Vermont       Missouri      Tennessee 
    0.47004324     0.56888134     0.57865019     0.58389969     0.64416651 
        Kansas      Minnesota       Michigan           Utah       Kentucky 
    0.67648037     0.69440380     0.76106640     0.84246817     0.85582067 
  North Dakota          Texas       Colorado       Arkansas         Hawaii 
    0.90350550     0.92114057     0.95645816     1.08626119     1.50683146
    
multiple_regression_examples.txt · Last modified: 2018/11/09 11:30 by hkimscil