correlation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
correlation [2023/10/05 16:09] – [e.g. 1,] hkimscilcorrelation [2023/10/05 17:19] (current) – [e.g. 1,] hkimscil
Line 154: Line 154:
 \end{eqnarray} \end{eqnarray}
  
----- +<WRAP box> 
-그런데 왜 다음과 같은 공식인지는 SS_{\small{X}} = \sum X^2 - \frac{(\sum X)^2}{n} +그런데 왜 다음과 같은 공식인지는  
 +\begin{align} 
 +SS_{\small{X}} = \sum X^2 - \frac{(\sum X)^2}{n} \label{ss.simplified} \tag{SS simplified} \\ 
 +\end{align} 
 우선 우선
 +
 \begin{align} \begin{align}
-Var[X] & \frac {SS_{\small{X}}}{df} \;\;\; \nonumber \\+Var[X] & \frac {SS_{\small{X}}}{df} \;\;\; \nonumber \\
 & \text{Let's assume that  } df \nonumber \\ & \text{Let's assume that  } df \nonumber \\
 & \text{is n instead of n-1} \nonumber \\ & \text{is n instead of n-1} \nonumber \\
 & \text{And we also know that} \nonumber \\ & \text{And we also know that} \nonumber \\
-& E[X^2] − (E[X])^2 \nonumber \\ +Var[X] E[X^2] − (E[X])^2 \;\; \nonumber \\ 
-& \frac {\Sigma {X^2}}{n} - \left(\frac{\Sigma{X}}{n} \right)^2 \nonumber \\ +\frac {\Sigma {X^2}}{n} - \left(\frac{\Sigma{X}}{n} \right)^2 \nonumber \\ 
-& \frac {\Sigma {X^2}}{n} - \frac{(\Sigma{X})^2}{n^2} \nonumber \\ +\frac {\Sigma {X^2}}{n} - \frac{(\Sigma{X})^2}{n^2} \nonumber \\ 
-& \therefore \\ +& \therefore \nonumber \\ 
-SS_{\small{X}} & \Sigma {X^2} - \frac{(\Sigma{X})^2}{n}   \\+SS_{\small{X}} & \Sigma {X^2} - \frac{(\Sigma{X})^2}{n}  \;\;\;\;\; \text{That is,  } \; \ref{ss.simplified} \nonumber \\ 
 +\end{align} 
 +</WRAP> 
 + 
 +<WRAP box> 
 +또한  
 +\begin{align} 
 +SP & = & \sum XY - \frac{\sum X \sum Y}{n} \label{sp.simplified} \tag{SP simplified} \\ 
 +\end{align} 
 + 
 + 
 +\begin{align} 
 +Cov[X,Y] & = E[(X-\overline{X})(Y-\overline{Y})] \nonumber \\ 
 + & = E[XY - X \overline{Y} - \overline{X} Y - \overline{X} \overline{Y}] \nonumber \\ 
 + & = E[XY] - E[X] \overline{Y} - \overline{X} E[Y] + \overline{X} \overline{Y} \nonumber \\ 
 + & \because \;\;\; E[c] = c \;\;\; \text{and, }  \overline{X} = E[X] \nonumber \\ 
 + & =  E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y] \nonumber \\ 
 + & =  E[XY] - E[X]E[Y] \nonumber \\ 
 + & =  \frac{\Sigma{XY}}{n} - \frac{\Sigma{X}}{n} \frac{\Sigma{Y}}{n}  \nonumber \\ 
 + & \therefore  \nonumber \\ 
 +SP & = \Sigma{XY} - \frac{\Sigma{X} \Sigma{Y}}{n}  \;\;\;\;\; \text{That is,  } \; \ref{sp.simplified} \nonumber \\ 
 \end{align} \end{align}
 +</WRAP>
  
 이제 r (correlation coefficient) 값은: 이제 r (correlation coefficient) 값은:
correlation.1696489784.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki